Response to Comment on: Sukumar et al. Nox2 NADPH Oxidase Has a Critical Role in Insulin Resistance–Related Endothelial Cell Dysfunction. Diabetes 2013;62:2130–2134
نویسندگان
چکیده
We would like to thank Drs. Jandeleit-Dahm and Schmidt (1) for their interesting comments regarding our study examining the role of the Nox2 isoform of NADPH oxidase in insulin resistance–related endothelial cell dysfunction (2). We would also like to congratulate them on their own elegant and comprehensive piece of work examining the role of the Nox isoforms Nox1, Nox2, and Nox4 in the development of advanced type 1 diabetes–related atherosclerosis (3). Based on their findings that Nox1 may be more important in diabetes-related atherosclerosis than other isoforms of NADPH oxidase, the authors raise concerns regarding our conclusions that Nox2 has a critical role in insulin resistance–related endothelial dysfunction. They also reported that holoinsufficiency of Nox2 in mice rendered diabetic using streptozotocin led to a substantial mortality rate. It is important to recognize the fundamental differences between our studies and those of Jandeleit-Dahm and colleagues (3). Jandeleit-Dahm and colleagues and You et al. (4) administered streptozotocin to render mice diabetic. In the article by Jandeleit-Dahm and colleagues, this led to a severe model of advanced insulin-deficient diabetes leading to substantial weight loss, hyperglycemia, and increased triglycerides and cholesterol. Moreover, it is well established that streptozotocin-induced diabetes leads to immune dysfunction (5), which may account for the findings reported by Jandeleit-Dahm and colleagues regarding mortality in Nox2 deficient mice. A comparison between our study and that of Jandeleit-Dahm and colleagues is therefore difficult to make. In our studies, we used two complementary models of human disease before the onset of hyperglycemia with the ApoE gene intact: 1) endothelium-specific insulin resistance (mice expressing a mutant human insulin receptor specifically in the endothelium) and 2) whole-body insulin resistance (mice with haploinsufficiency of the insulin receptor). We found no increase in Nox1 or Nox4 expression in endothelial cells from these mice, but did demonstrate increased Nox2. Mice with endothelium-specific insulin resistance deficient in Nox2 or mice treated with the Nox2 inhibitor gp91ds-tat did not have increased mortality. In our studies, acute and chronic inhibition of Nox2 led to restoration of endothelial vasorelaxation and superoxide to the levels seen in wild-type littermates, providing compelling evidence that Nox2 is a critical determinant of endothelial dysfunction in insulin resistance. We did not examine the role of Nox2 in severe hyperglycemia– induced endothelial dysfunction and atherosclerosis. In the commentary to our article, Dr. Symons (6) raised a number of suggestions for future work, one of which was to assess the role of Nox2 in insulin resistance– related atherosclerosis; we are currently pursuing this avenue of work. The work from the laboratories of Drs. Jandeleit-Dahm and Schmidt and our own highlight the complexity of diabetes-related vascular disease and illustrate that a “one size fits all” approach is not appropriate for the treatment of this lethal complication of diabetes.
منابع مشابه
Comment on: Sukumar et al. Nox2 NADPH Oxidase Has a Critical Role in Insulin Resistance–Related Endothelial Cell Dysfunction. Diabetes 2013;62:2130–2134
T he article by Sukumar et al. (1) published in a recent issue of Diabetes concludes that the type 2 NADPH oxidase (Nox2) plays a critical role in insulin resistance–related endothelial dysfunction. However, in our opinion it is too premature to draw these conclusions when looking at the entire body of available literature. The authors show in two different genetic mouse models of insulin resis...
متن کاملNox2 NADPH Oxidase Has a Critical Role in Insulin Resistance–Related Endothelial Cell Dysfunction
Insulin resistance is characterized by excessive endothelial cell generation of potentially cytotoxic concentrations of reactive oxygen species. We examined the role of NADPH oxidase (Nox) and specifically Nox2 isoform in superoxide generation in two complementary in vivo models of human insulin resistance (endothelial specific and whole body). Using three complementary methods to measure super...
متن کاملOpportunity “Nox”: A Novel Approach to Preventing Endothelial Dysfunction in the Context of Insulin Resistance
Cardiovascular complications are more prevalent in individuals with conditions associated with insulin resistance. Knowledge is evolving concerning the mechanistic link between insulin resistance and vascular disease, but complete clarity does not exist. This is a high-priority area of investigation because individual and societal costs associated with diabetic vascular complications are increa...
متن کاملSpironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملSpironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کامل